login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215623
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^4).
9
1, 2, 11, 89, 836, 8551, 92445, 1039030, 12019135, 142151324, 1711116646, 20894534324, 258195565959, 3222677162409, 40569811695707, 514520507077695, 6567611974106756, 84310605465652750, 1087798325715407703, 14098475168420865396, 183465816241394787196
OFFSET
0,2
COMMENTS
The radius of convergence of g.f. A(x) is r = 0.0712256396327314729661274986100... with A(r) = 1.4248895273944523042559975726479124492235978714420... where y=A(r) satisfies 3*y^7 - 4*y^6 + 16*y^5 - 28*y^4 + 8*y^3 - 4 = 0.
LINKS
FORMULA
G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(3*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^3)^2 + 4*x^4) - (1+x^3))/(2*x^4).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(n+3*k+1,n-k) / (n+3*k+1). - Seiichi Manyama, Jul 19 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 7*x^2 + 39*x^3 + 242*x^4 + 1634*x^5 + ..., the g.f. of A364336.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 15*x^2 + 163*x^3 + 2070*x^4 + 28698*x^5 + ..., the g.f. of A364331. (End)
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + 92445*x^6 + ...
Related expansions.
A(x)^4 = 1 + 8*x + 68*x^2 + 652*x^3 + 6750*x^4 + 73544*x^5 + 831078*x^6 + ...
A(x)^5 = 1 + 10*x + 95*x^2 + 965*x^3 + 10350*x^4 + 115507*x^5 + ...
where A(x) = 1 + x*(A(x) + A(x)^4) + x^2*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^3)*x + (1 + 2^2*A(x)^3 + A(x)^6)*x^2/2 +
(1 + 3^2*A(x)^3 + 3^2*A(x)^6 + A(x)^9)*x^3/3 +
(1 + 4^2*A(x)^3 + 6^2*A(x)^6 + 4^2*A(x)^9 + A(x)^12)*x^4/4 +
(1 + 5^2*A(x)^3 + 10^2*A(x)^6 + 10^2*A(x)^9 + 5^2*A(x)^12 + A(x)^15)*x^5/5 + ...
more explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 209*x^3/3 + 2550*x^4/4 + 32082*x^5/5 + 411705*x^6/6 + 5356416*x^7/7 + ....
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(3*j))*x^m/m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^4)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 17 2012
STATUS
approved