login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215626
Number of terms in 8th derivative of a function composed with itself n times.
2
1, 22, 129, 468, 1309, 3101, 6539, 12644, 22857, 39148, 64141, 101256, 154869, 230491, 334967, 476696, 665873, 914754, 1237945, 1652716, 2179341, 2841465, 3666499, 4686044, 5936345, 7458776, 9300357, 11514304, 14160613, 17306679, 21027951, 25408624, 30542369
OFFSET
1,2
LINKS
W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
FORMULA
G.f.: (x^6-7*x^5+15*x^4-4*x^3-19*x^2+14*x+1)*x/(x-1)^8.
a(n) = n*(n+6)*(n^5+50*n^4+568*n^3+722*n^2-713*n+92)/5040.
MAPLE
a:= n-> n*(n+6)*(92+(-713+(722+(568+(50+n)*n)*n)*n)*n)/5040:
seq(a(n), n=1..40);
MATHEMATICA
CoefficientList[Series[(x^6-7x^5+15x^4-4x^3-19x^2+14x+1)x/(x-1)^8, {x, 0, 40}], x]//Rest (* Harvey P. Dale, Aug 02 2020 *)
CROSSREFS
Row n=8 of A022818.
Sequence in context: A220622 A229375 A309923 * A125247 A249302 A095694
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2012
STATUS
approved