|
|
A215626
|
|
Number of terms in 8th derivative of a function composed with itself n times.
|
|
2
|
|
|
1, 22, 129, 468, 1309, 3101, 6539, 12644, 22857, 39148, 64141, 101256, 154869, 230491, 334967, 476696, 665873, 914754, 1237945, 1652716, 2179341, 2841465, 3666499, 4686044, 5936345, 7458776, 9300357, 11514304, 14160613, 17306679, 21027951, 25408624, 30542369
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..1000
W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
|
|
FORMULA
|
G.f.: (x^6-7*x^5+15*x^4-4*x^3-19*x^2+14*x+1)*x/(x-1)^8.
a(n) = n*(n+6)*(n^5+50*n^4+568*n^3+722*n^2-713*n+92)/5040.
|
|
MAPLE
|
a:= n-> n*(n+6)*(92+(-713+(722+(568+(50+n)*n)*n)*n)*n)/5040:
seq(a(n), n=1..40);
|
|
MATHEMATICA
|
CoefficientList[Series[(x^6-7x^5+15x^4-4x^3-19x^2+14x+1)x/(x-1)^8, {x, 0, 40}], x]//Rest (* Harvey P. Dale, Aug 02 2020 *)
|
|
CROSSREFS
|
Row n=8 of A022818.
Sequence in context: A229375 A206418 A309923 * A125247 A249302 A095694
Adjacent sequences: A215623 A215624 A215625 * A215627 A215628 A215629
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Aug 18 2012
|
|
STATUS
|
approved
|
|
|
|