OFFSET
1,1
COMMENTS
Prime-partitionable numbers are defined in A059756.
To demonstrate that a number is prime-partitionable a suitable 2-partition {P1, P2} of the set of primes < a(n) must be found. In this sequence we are interested in prime-partitionable numbers such that the smallest P1 contains 3 odd primes.
Conjecture:
If P1 = {p1a, p1b, p1c} with p1a, p1b and p1c odd primes and p1a < p1b < p1c then the union of the integer solutions to the three equation groups below, {{m1}, {m2}, {m3}}, contains all even members of {a(n)}:
m1 = v1*p1a + 1 = v2*p1b + p1a = p1c + p1b
m2 = v3*p1a + 1 = p1b + p1a^2 = p1c + p1a
m3 = v4*p1a + p1b = v5*p1b + 1 = p1c + p1a
where v1, v2, v3, v4 and v5 are odd naturals.
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..77
Christopher Hunt Gribble, Prime-partitionable numbers with min(#P1)=3
W. Holsztynski, R. F. E. Strube, Paths and circuits in finite groups, Discr. Math. 22 (1978) 263-272.
R. J. Mathar and M. F. Hasler, Is 52 prime-partitionable?, Seqfan thread (Jun 29 2014), arXiv:1510.07997
W. T. Trotter, Jr. and Paul Erdős, When the Cartesian product of directed cycles is Hamiltonian, J. Graph Theory 2 (1978) 137-142 DOI:10.1002/jgt.3190020206.
EXAMPLE
a(1) = 22 because A059756(2) = 22 and both the 2-partitions {3, 13, 19}, {2, 3, 11, 13, 19} and {5, 7, 17}, {2, 5, 7, 11, 17} of the set of primes < 22 demonstrate it.
PROG
(PARI)
prime_part(n)=
{
my (P = primes(primepi(n-1)));
for (k1 = 2, #P - 1,
for (k2 = 1, k1 - 1,
for (k3 = 1, k2 - 1,
mask = 2^k1 + 2^k2 + 2^k3;
P1 = vecextract(P, mask);
P2 = setminus(P, P1);
for (n1 = 1, n - 1,
bittest(n - n1, 0) || next;
setintersect(P1, factor(n1)[, 1]~) && next;
setintersect(P2, factor(n-n1)[, 1]~) && next;
next(2)
);
print1(n, ", ");
);
);
);
}
# PP = {{2x, x = 1:1000} - {A245664(n), 1:145}}
PP=[2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30, \
32, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, \
...
1980, 1984, 1986, 1988, 1990, 1994, 1996, 1998, 2000];
for(m=1, #PP, prime_part(PP[m]));
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Christopher Hunt Gribble, Oct 24 2014
STATUS
approved