OFFSET
0,3
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 349 Entry 2(viii).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(2/3) * eta(q^3)^4 / (eta(q) * eta(q^9)^3) in powers of q.
Expansion of f(-q^3)^4 / (f(-q) * f(-q^9)^3) = f(-q^4, -q^5) / f(-q, -q^8) + q * f(-q^2, -q^7) / f(-q^4, -q^5) - q * f(-q, -q^8) / f(-q^2, -q^7) in powers of q where f(), f(,) are Ramanujan theta functions.
Euler transform of period 9 sequence [ 1, 1, -3, 1, 1, -3, 1, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^3)/q^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^2 * (u * w - v) - u * w * (u + w).
EXAMPLE
G.f. = 1 + x + 2*x^2 - x^3 + x^4 - x^5 + x^6 - 3*x^7 - 2*x^8 + 3*x^9 + 3*x^10 + ...
G.f. = q^-2 + q + 2*q^4 - q^7 + q^10 - q^13 + q^16 - 3*q^19 - 2*q^22 + 3*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^4 / (QPochhammer[ x] QPochhammer[ x^9]^3), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^4 / (eta(x + A) * eta(x^9 + A)^3), n))};
(PARI) q='q+O('q^99); Vec(eta(q^3)^4/(eta(q)*eta(q^9)^3)) \\ Altug Alkan, Mar 30 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 17 2012
STATUS
approved