login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363096
Number of partitions of n whose least part is a multiple of 5.
3
0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 3, 2, 3, 3, 4, 7, 7, 8, 10, 11, 15, 16, 19, 22, 27, 34, 39, 46, 54, 63, 76, 86, 101, 117, 136, 161, 186, 214, 249, 287, 335, 384, 445, 509, 588, 677, 776, 888, 1020, 1163, 1334, 1519, 1735, 1975, 2253, 2564, 2917, 3312, 3762, 4265, 4842, 5477, 6203, 7012, 7928
OFFSET
1,10
COMMENTS
In general, for m > 0, if g.f. = Sum_{k>=1} x^(m*k)/Product_{j>=m*k} (1-x^j), then a(n) ~ Pi^(m-1) * (m-1)! * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * 6^(m/2) * n^((m+1)/2)) * (1 - (m*(m+1)/(4*Pi) + (6*m^2 + 18*m + 1 + c)*Pi/144)/sqrt(n/6)), where c = 0 for m > 1 and c = -24 for m = 1. - Vaclav Kotesovec, May 21 2023
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(5*k)/Product_{j>=5*k} (1-x^j).
a(n) ~ Pi^4 * exp(Pi*sqrt(2*n/3)) / (2*3^(3/2)*n^3) * (1 - (15*sqrt(6)/(2*Pi) + 241*Pi*sqrt(6)/144) / sqrt(n)). - Vaclav Kotesovec, May 21 2023
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[x^(5*k)/QPochhammer[x^(5*k), x], {k, 1, nmax/5}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
PROG
(PARI) my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=5*k, N, 1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 19 2023
STATUS
approved