OFFSET
1,10
COMMENTS
In general, for m > 0, if g.f. = Sum_{k>=1} x^(m*k)/Product_{j>=m*k} (1-x^j), then a(n) ~ Pi^(m-1) * (m-1)! * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * 6^(m/2) * n^((m+1)/2)) * (1 - (m*(m+1)/(4*Pi) + (6*m^2 + 18*m + 1 + c)*Pi/144)/sqrt(n/6)), where c = 0 for m > 1 and c = -24 for m = 1. - Vaclav Kotesovec, May 21 2023
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(5*k)/Product_{j>=5*k} (1-x^j).
a(n) ~ Pi^4 * exp(Pi*sqrt(2*n/3)) / (2*3^(3/2)*n^3) * (1 - (15*sqrt(6)/(2*Pi) + 241*Pi*sqrt(6)/144) / sqrt(n)). - Vaclav Kotesovec, May 21 2023
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[x^(5*k)/QPochhammer[x^(5*k), x], {k, 1, nmax/5}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
PROG
(PARI) my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=5*k, N, 1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 19 2023
STATUS
approved