login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363098
Primitive terms of A363063.
3
2, 12, 720, 864, 4320, 21600, 62208, 151200, 311040, 1555200, 7776000, 10886400, 54432000, 381024000, 4191264000, 160030080000, 251475840000, 1760330880000, 11522165760000, 19363639680000, 126743823360000, 251727315840000, 403275801600000, 829595934720000
OFFSET
1,1
COMMENTS
Numbers k > 1 in A363063 such that there are no i, j > 1 in A363063 with k = i*j.
Factorization into primitive terms of A363063 is not unique. The first counterexample is 1728 = 864 * 2 = 12^3.
For every odd prime p there are infinitely many terms whose greatest prime factor is p. Reading along the sequence, we see a term with a new greatest prime factor if and only if it is in A347284.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000
EXAMPLE
4 is in A363063, but is not a term here, because 2 is in A363063 and 2 * 2 = 4.
720 is the first term of A363063 that is divisible by 5, from which we deduce 720 is not a product of nonunit terms of A363063. So 720 is a term here.
CROSSREFS
Sequence in context: A216335 A173104 A141770 * A230265 A060055 A363234
KEYWORD
nonn
AUTHOR
STATUS
approved