login
A363095
Number of partitions of n whose least part is a multiple of 4.
3
0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 3, 2, 3, 3, 7, 6, 8, 9, 13, 13, 17, 19, 28, 30, 38, 43, 56, 62, 76, 87, 110, 124, 151, 173, 211, 241, 289, 332, 399, 456, 539, 620, 733, 838, 983, 1127, 1322, 1513, 1761, 2016, 2343, 2677, 3096, 3536, 4083, 4655, 5355, 6101, 7005, 7969, 9124, 10370, 11856, 13453, 15340
OFFSET
1,8
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=4*k} (1-x^j).
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(5/2)) * (1 - (5*sqrt(6)/Pi + 169*Pi*sqrt(6)/144)/sqrt(n)). - Vaclav Kotesovec, May 21 2023
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[x^(4*k)/QPochhammer[x^(4*k), x], {k, 1, nmax/4}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 20 2023 *)
PROG
(PARI) my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=4*k, N, 1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 19 2023
STATUS
approved