login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A344446
Number of partitions of n into 3 semiprimes.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 5, 7, 5, 4, 4, 5, 6, 7, 7, 6, 6, 7, 10, 10, 7, 7, 9, 10, 11, 11, 13, 13, 8, 12, 14, 14, 13, 9, 13, 14, 16, 17, 19, 15, 15, 15, 22, 23, 15, 14, 19, 23, 23, 22, 24
OFFSET
0,19
LINKS
FORMULA
a(n) = [x^n y^3] 1/Product_{j>=1} (1-y*x^A001358(j)).
MAPLE
h:= proc(n) option remember; `if`(n=0, 0,
`if`(numtheory[bigomega](n)=2, n, h(n-1)))
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
`if`(i>n, 0, x*b(n-i, h(min(n-i, i))))+b(n, h(i-1)))), x, 4)
end:
a:= n-> coeff(b(n, h(n)), x, 3):
seq(a(n), n=0..80);
MATHEMATICA
Table[Count[IntegerPartitions[n, {3}], _?(PrimeOmega[#]=={2, 2, 2}&)], {n, 0, 80}] (* Harvey P. Dale, Oct 12 2023 *)
CROSSREFS
Column k=3 of A344447.
Cf. A001358.
Sequence in context: A300655 A352896 A290601 * A094899 A363095 A057774
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, May 19 2021
STATUS
approved