login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300655
a(n) is the length of the longest contiguous block of ones in the binary expansion of 1/n.
2
1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 3, 1, 3, 1, 1, 1, 4, 3, 4, 2, 2, 3, 2, 1, 4, 3, 4, 1, 4, 1, 1, 1, 5, 4, 3, 3, 5, 4, 2, 2, 5, 2, 5, 3, 2, 2, 3, 1, 4, 4, 1, 3, 5, 4, 4, 1, 5, 4, 5, 1, 5, 1, 1, 1, 6, 5, 6, 4, 3, 3, 3, 3, 3, 5, 3, 4, 4, 2, 4, 2, 6, 5, 6, 2, 2, 5, 4
OFFSET
1,5
COMMENTS
This sequence has similarities with A038374: here we consider the binary expansion of 1/n, there the binary expansion of n.
FORMULA
a(2*n) = a(n).
a(2^k + 1) = k for any k > 0.
a(n) = 1 iff n belongs to A300630.
EXAMPLE
The first terms, alongside the binary representation of 1/n, are:
n a(n) bin(1/n) with repeating digits in parentheses
-- ---- ---------------------------------------------
1 1 1.(0)
2 1 0.1(0)
3 1 0.(01)
4 1 0.01(0)
5 2 0.(0011)
6 1 0.0(01)
7 1 0.(001)
8 1 0.001(0)
9 3 0.(000111)
10 2 0.0(0011)
11 3 0.(0001011101)
12 1 0.00(01)
13 3 0.(000100111011)
14 1 0.0(001)
15 1 0.(0001)
16 1 0.0001(0)
17 4 0.(00001111)
18 3 0.0(000111)
19 4 0.(000011010111100101)
20 2 0.00(0011)
PROG
(PARI) a(n) = my (w=1, s=Set(), f=1/max(n, 2)); while (!setsearch(s, f), while (floor(f*2^(w+1))==2^(w+1)-1, w++); s=setunion(s, Set(f)); f=frac(f*2)); return (w)
CROSSREFS
Sequence in context: A125644 A048821 A120221 * A352896 A290601 A344446
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 10 2018
STATUS
approved