login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300658
Numbers m that divide sigma(sigma(m) - m) where sigma is the sum of divisors function (A000203).
0
4, 6, 8, 28, 32, 36, 78, 84, 128, 168, 252, 496, 504, 532, 756, 1488, 2808, 3720, 4464, 5928, 8128, 8192, 13392, 24384, 61236, 73152, 78120, 131072, 183708, 217728, 219456, 425880, 458640, 524288, 1084752, 1834560, 2204280, 3254256, 6120432, 6386688, 11007360
OFFSET
1,1
COMMENTS
Numbers m that divide A072869(m).
Numbers m such that sigma(sigma(m)-m) = k*m for k = 1 - 5:
k = 1: 4, 8, 32, 128, 8192, 131072, 524288, 2147483648, ... (A072868),
k = 2: 6, 28, 36, 496, 8128, 33550336, 8589869056, ... (A247111),
k = 3: 78, 532, ...,
k = 4: 84, 252, 756, 1488, 4464, 13392, 24384, 61236, 73152, ...,
k = 5: 168, 2808, 5928, 6120432, ...
Perfect numbers (A000396) are terms.
Corresponding values of (sigma(sigma(m) - m)) / m for numbers m from this sequence: 1, 2, 1, 2, 1, 2, 3, 4, 1, 5, 4, 2, 6, 3, 4, 4, 5, 7, 4, 5, 2, 1, 4, 4, 4, 4, 10, 1, 4, 8, 4, 12, 10, 1, 4, 11, 9, ...
Sequence of the smallest numbers k such that sigma(sigma(k) - k) = n*k for n >= 1: 4, 6, 78, 84, 168, 504, 3720, 217728, 2204280, 78120, 1834560, 425880, ...
EXAMPLE
6 is a term because sigma(sigma(6) - 6) / 6 = 12 / 6 = 2 (integer).
PROG
(Magma) [n: n in[2..1000000] | SumOfDivisors(SumOfDivisors(n)- n) mod n eq 0]
(PARI) isok(n) = (n!=1) && !(sigma(sigma(n)-n) % n); \\ Michel Marcus, Mar 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 24 2018
STATUS
approved