login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300661
Expansion of e.g.f. exp(-Sum_{k>=1} prime(k)*x^k/k!).
1
1, -2, 1, 5, 4, -53, -177, 282, 5759, 20355, -83420, -1420133, -6245485, 29035652, 648899541, 4034393367, -10488623858, -464971765297, -4310935438663, -3489419105786, 446500913437911, 6423072226704027, 30987397708208720, -462727554963927783, -11862200720684515159
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(-Sum_{k>=1} A000040(k)*x^k/k!).
EXAMPLE
E.g.f.: A(x) = 1 - 2*x/1! + x^2/2! + 5*x^3/3! + 4*x^4/4! - 53*x^5/5! - 177*x^6/6! + 282*x^7/7! + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, -add(a(n-j)*
ithprime(j)*binomial(n-1, j-1), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 10 2018
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[-Sum[Prime[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[-Prime[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 10 2018
STATUS
approved