login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005605
a(n) = a(n-1) + (-1)^(n-1) * a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
(Formerly M0176)
4
0, 1, 1, 2, 1, 5, 4, 29, 13, 854, 685, 730001, 260776, 532901720777, 464897598601, 283984244007552571082330, 67854466822576053925129, 80647050844541158378200602801460469923692154029
OFFSET
0,4
REFERENCES
J. Mestel, Archimedeans Problems Drive 1977, Eureka, 39 (1978), 38-40.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..25
J. Mestel, Archimedeans Problems Drive 1977, Eureka, 39 (1978), 38-40. (Annotated scanned copy)
FORMULA
For odd n, a(n) = floor(c^(2^((n-5)/2))) where c = 5.40649051189479721671529024151000148043062587729806430849172463824709059699198634362266484243.... - Gerald McGarvey, Dec 08 2004
The alternating version of this sequence, b(n) = (-1)^(n-1)*a(n) = 0,1,-1,2,-1,5,-4,29,-13,..., satisfies b(n) = b(n-2)^2 - b(n-1). - Franklin T. Adams-Watters, Feb 27 2007
MATHEMATICA
t = {0, 1}; Do[AppendTo[t, t[[-2]]^2 - t[[-1]]], {n, 18}]; Abs[t] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
nxt[{n_, a1_, a2_}]:={n+1, a2, a2+(-1)^n*a1^2}; Drop[Transpose[NestList[nxt, {0, 0, 1}, 20]][[3]], 2] (* Harvey P. Dale, Oct 03 2012 *)
PROG
(Haskell)
a005605 n = a005605_list !! n
a005605_list = 0 : 1 : zipWith (+) (tail a005605_list)
(zipWith (*) (cycle [-1, 1]) (map (^ 2) $ a005605_list))
-- Reinhard Zumkeller, Feb 16 2012
CROSSREFS
Sequence in context: A124660 A217104 A141485 * A300661 A145882 A209765
KEYWORD
nonn,easy,nice
STATUS
approved