login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209765
Triangle of coefficients of polynomials u(n,x) jointly generated with A209766; see the Formula section.
3
1, 1, 2, 1, 5, 5, 1, 5, 15, 12, 1, 5, 21, 45, 29, 1, 5, 21, 77, 129, 70, 1, 5, 21, 89, 265, 361, 169, 1, 5, 21, 89, 353, 865, 991, 408, 1, 5, 21, 89, 377, 1325, 2717, 2681, 985, 1, 5, 21, 89, 377, 1549, 4733, 8281, 7169, 2378, 1, 5, 21, 89, 377, 1597, 6125
OFFSET
1,3
COMMENTS
Limiting row: F(2+3k), where F=A000045 (Fibonacci numbers)
Coefficient of x^n in u(n,x): 1,2,5,12,.... A000129(n)
Row sums: 1,3,11,33,101,303,911,2733,..... A081250
Alternating row sums: 1,-1,1,-1,1,-1,,..... A033999
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...2
1...5...5
1...5...15...12
1...5...21...45...29
First three polynomials u(n,x): 1, 1 + 2x, 1 + 5x + 5x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209765 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209766 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A081250 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A060925 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *)
CROSSREFS
Sequence in context: A005605 A300661 A145882 * A209759 A111785 A304462
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 14 2012
STATUS
approved