login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304462
Coefficients of the compositionally inverted power series g:=f^{-1} of a formal power series f with the starting coefficients f_0=0 and f_1=1 expressed as polynomials in the coefficients f_2, f_3, ... of the given power series f(X) = X + f_2*X^2 + f_3*X^3 + ...
3
1, -1, -1, 2, -1, 5, -5, -1, 6, 3, -21, 14, -1, 7, 7, -28, -28, 84, -42, -1, 8, 8, -36, 4, -72, 120, -12, 180, -330, 132, -1, 9, 9, -45, 9, -90, 165, -45, -45, 495, -495, 165, -990, 1287, -429
OFFSET
0,4
COMMENTS
If g is taken as g(X) = X + g_2*X^2 + g_3*X^3 + ... then the compositions are (g circle f)(X) = g(f(X)) = X and (f circle g)(X) = f(g(X)) = X.
Lexicographically descending in the rows, i.e., f(5) f(2)^2 f(1)^3 (-36) > f(4)^2 f(1)^4 (+4).
This is another version of A111785, where each row is sorted lexicographically ascending, i.e., f(1)^4 f(4)^2 (+4) < f(1)^3 f(2)^2 f(5) (-36).
REFERENCES
Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, Part I. New York: McGraw-Hill, 1953.
FORMULA
g(n) := f(1)^(-n) Sum_{j(2), j(3), ...} (-1)^{j(2) + j(3) + ...} ((n-1 + j(2) + j(3) + ...)!)/(n! j(2)! j(3)! ...) ((f(2))/(f(1))^j(2) ((f(3))/(f(1)))^j(3) ...
The sum is to be taken over all combinations of the exponents {j(2), j(3), j(4), ...} with j(2) + 2j(3) + 3j(4) + ... = n-1. See Morse, P. M. and Feshbach, H. pp. 411-413.
EXAMPLE
Matrix lexicographically descending in the rows:
for instance f(5) f(2)^2 f(1)^3 (-36) > f(4)^2 f(1)^4 (+4)
1;
-1;
-1,2;
-1,5,-5;
-1,6,3,-21,14;
-1,7,7,-28,-28,84,-42;
-1,8,8,-36,4,-72,120,-12,180,-330,132;
-1,9,9,-45,9,-90,165,-45,-45,495,-495,165,-990,1287,-429;
-1,10,10,-55,10,-110,220,5,-110,-55,660,-715,-55,330,660,-2860,2002,55,-1430,5005,-5005,1430;
PROG
(MuPAD)
alfa:=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"]:
byRow := proc(od, // original weighted degree
wd, // remaining weighted degree
il, // index of last indeterminate
jl, // exponent of last indeterminate
ni, // remaining number of indeterminates
lx) // lexicographic string
local j;
begin
if wd > 1 then
for j from min(wd, il) downto 2 do:
if j >= il then
j:=il: // stay at the latest indeterminate
byRow(od, wd-j+1, j, jl+1, ni-1, lx.alfa[j]):
else // advance to next indeterminate
byRow(od, wd-j+1, j, 1 , ni-1, lx.alfa[j]):
end_if:
end_for:
else // output the monomial
dd:=1: d0:="+": dc:=1:
for j from length(lx)-1 downto 0 do:
d1:=substring(lx, j):
if d1 <> d0 then
d0:=d1: dc:=1: dd:=-dd:
else // the indeterminate changes
dc:=dc+1: dd:=-dd*dc:
end_if:
end_for:
nn:=fact(2*od-ni-2)/fact(od): // rising factorial
// One row of A304462: coefficients of the lexicographically descending monomials:
print(nn/dd):
// One row of A304462: coefficients of the lexicographically descending monomials
// plus some representation of the monomials themselves:
// for j from 1 to ni do:
// lx:=lx."a":
// end_for:
// print(nn/dd, lx): // monomial lx
end_if:
end_proc:
// Output the 8th row:
n:=8:
byRow(n, n, n, 0, n-1, "")
CROSSREFS
Cf. A111785.
Sequence in context: A209765 A209759 A111785 * A021468 A209830 A209695
KEYWORD
tabf,sign
AUTHOR
Herbert Eberle, May 13 2018
STATUS
approved