login
A209766
Triangle of coefficients of polynomials v(n,x) jointly generated with A209765; see the Formula section.
3
1, 1, 3, 1, 3, 7, 1, 3, 13, 17, 1, 3, 13, 43, 41, 1, 3, 13, 55, 133, 99, 1, 3, 13, 55, 209, 391, 239, 1, 3, 13, 55, 233, 739, 1113, 577, 1, 3, 13, 55, 233, 939, 2469, 3095, 1393, 1, 3, 13, 55, 233, 987, 3589, 7903, 8457, 3363, 1, 3, 13, 55, 233, 987, 4085
OFFSET
1,3
COMMENTS
Limiting row: F(1+3k), where F=A000045 (Fibonacci numbers)
Coefficient of x^n in u(n,x): A001333(n)
Row sums: 1,4,11,34,101,304,... A060925.
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...3
1...3...7
1...3...13...17
1...3...13...43...41
First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 7x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209765 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209766 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A081250 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A060925 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *)
CROSSREFS
Sequence in context: A336203 A209566 A208916 * A356207 A114972 A107461
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 14 2012
STATUS
approved