OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>0} k!*x^(k*(k+1)/2)/(1-x^k).
EXAMPLE
a(6) = 7 because we have 6, 123, 132, 213, 231, 312 and 321.
MAPLE
G:=sum(k!*x^(k*(k+1)/2)/(1-x^k), k=1..20): Gser:=series(G, x=0, 73): seq(coeff(Gser, x^n), n=1..70); # Emeric Deutsch
MATHEMATICA
nn=62; Drop[CoefficientList[Series[Sum[k!x^(k (k+1)/2)/(1-x^k), {k, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Apr 13 2014 *)
PROG
(PARI)
N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1, S, n! * q^(n*(n+1)/2) / (1-q^n) );
Vec(gf)
/* Joerg Arndt, Oct 20 2012 */
CROSSREFS
KEYWORD
AUTHOR
Vladeta Jovovic, May 26 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 19 2005
STATUS
approved