login
A107461
Number of gap-free compositions of n into distinct parts, cf. A107428.
3
1, 1, 3, 1, 3, 7, 3, 1, 9, 25, 3, 7, 3, 25, 129, 1, 3, 31, 3, 121, 729, 25, 3, 7, 123, 25, 729, 5041, 3, 151, 3, 1, 729, 25, 5163, 40327, 3, 25, 729, 121, 3, 5071, 3, 40321, 363729, 25, 3, 7, 5043, 145, 729, 40321, 3, 362911, 3628923, 5041, 729, 25, 3, 40447, 3, 25
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>0} k!*x^(k*(k+1)/2)/(1-x^k).
EXAMPLE
a(6) = 7 because we have 6, 123, 132, 213, 231, 312 and 321.
MAPLE
G:=sum(k!*x^(k*(k+1)/2)/(1-x^k), k=1..20): Gser:=series(G, x=0, 73): seq(coeff(Gser, x^n), n=1..70); # Emeric Deutsch
MATHEMATICA
nn=62; Drop[CoefficientList[Series[Sum[k!x^(k (k+1)/2)/(1-x^k), {k, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Apr 13 2014 *)
PROG
(PARI)
N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1, S, n! * q^(n*(n+1)/2) / (1-q^n) );
Vec(gf)
/* Joerg Arndt, Oct 20 2012 */
CROSSREFS
Sequence in context: A209766 A356207 A114972 * A035619 A280995 A092689
KEYWORD
easy,nonn,look
AUTHOR
Vladeta Jovovic, May 26 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 19 2005
STATUS
approved