login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379361
Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).
3
1, 0, 1, 1, 3, 1, 3, 7, 5, 2, 5, 7, 13, 7, 13, 59, 89, 37, 52, 89, 119, 89, 119, 109, 62, 47, 52, 89, 119, 89, 119, 803, 1013, 803, 1013, 1921, 2341, 1921, 2341, 2201, 2621, 2201, 2621, 2411, 2621, 2201, 2621, 2537, 2747, 2537, 2957, 2747, 3167, 1009, 1149, 3307
OFFSET
1,5
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.8, pp. 27-28.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
a(n)/A379362(n) ~ D * c * n, where D = A084911, c = 2/(1 + Sum_{k>=1} 1/(P(k)*2^k)) - 1 = 0.18634377034863729099..., and P(k) = A000041(k).
EXAMPLE
Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
MATHEMATICA
Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
PROG
(PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};
CROSSREFS
Sequence in context: A107461 A035619 A280995 * A092689 A281553 A064434
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Dec 21 2024
STATUS
approved