login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379363
Numerators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).
3
1, 4, 23, 199, 637, 661, 8953, 9187, 65869, 201247, 205927, 26048, 132697, 134272, 135637, 2190667, 24424937, 3513791, 131554667, 132348317, 133227437, 938941259, 947830139, 190366027, 2947643, 74101331, 223443593, 2916305159, 55809797621, 55978686341, 3437499844001
OFFSET
1,2
LINKS
László Tóth, A survey of gcd-sum functions, Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.1. See pp. 18-19.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
Shiqin Chen and Wenguang Zhai, Reciprocals of the Gcd-Sum Functions, Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.3.
FORMULA
a(n) = numerator(Sum_{k=1..n} 1/A018804(k)).
a(n)/A379364(n) = Sum_{j=0..N} K_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2)), for any integer N >= 1, where K_j are constants, and in particular K_0 = (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 1.30088863073811791549... .
EXAMPLE
Fractions begin with 1, 4/3, 23/15, 199/120, 637/360, 661/360, 8953/4680, 9187/4680, 65869/32760, 201247/98280, 205927/98280, 26048/12285, ...
MATHEMATICA
f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
PROG
(PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2]); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A018804, A272718, A370895, A379364 (denominators), A379365.
Sequence in context: A222454 A336948 A099869 * A369194 A365353 A265677
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Dec 21 2024
STATUS
approved