OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000
László Tóth, A survey of gcd-sum functions, Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.1. See pp. 18-19.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
Shiqin Chen and Wenguang Zhai, Reciprocals of the Gcd-Sum Functions, Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.3.
FORMULA
EXAMPLE
Fractions begin with 1, 4/3, 23/15, 199/120, 637/360, 661/360, 8953/4680, 9187/4680, 65869/32760, 201247/98280, 205927/98280, 26048/12285, ...
MATHEMATICA
f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
PROG
(PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2]); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(numerator(s), ", "))};
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Dec 21 2024
STATUS
approved