The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084911 Decimal expansion of linear asymptotic constant B in Sum_{k=1..n} 1/A000688(k) = ~B*n + ... 3
7, 5, 2, 0, 1, 0, 7, 4, 2, 3, 7, 7, 0, 2, 9, 1, 6, 1, 5, 2, 0, 6, 3, 6, 0, 7, 7, 4, 5, 5, 4, 3, 2, 5, 7, 6, 5, 6, 0, 7, 1, 8, 1, 4, 6, 9, 5, 9, 1, 2, 8, 5, 2, 6, 6, 9, 6, 3, 9, 9, 7, 9, 8, 3, 2, 6, 7, 2, 3, 5, 0, 5, 6, 8, 4, 6, 4, 7, 9, 7, 3, 7, 8, 6, 3, 9, 4, 7, 3, 6, 3, 7, 8, 0, 8, 6, 5, 4, 3, 7, 1, 0, 1, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.
LINKS
Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See p. 16.
László Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1; arXiv preprint, arXiv:1608.00795 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Abelian Group.
FORMULA
Equals Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k))/p^k), where P(k) is the unrestricted partition function. - Jean-François Alcover, Apr 29 2016, [typo corrected by Vaclav Kotesovec, Mar 05 2024]
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020
EXAMPLE
0.7520107423...
MATHEMATICA
digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000];
nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax];
s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ;
f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]];
A0 = f[m]; RealDigits[A0, 10, digits][[1]] (* Jean-François Alcover, Apr 29 2016 *)
PROG
(PARI) default(realprecision, 120); default(parisize, 10000000);
prodeulerrat((1-1/p)*(1 + sum(i = 1, 512, 1/(numbpart(i)*p^i)))) \\ Amiram Eldar, Mar 08 2024
CROSSREFS
Sequence in context: A196486 A216853 A272169 * A073742 A071876 A306538
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jun 11 2003
EXTENSIONS
Data corrected by Jean-François Alcover, Apr 29 2016
a(10) from Vaclav Kotesovec, Mar 07 2024
More terms from Amiram Eldar, Mar 08 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 00:14 EDT 2024. Contains 372720 sequences. (Running on oeis4.)