login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272339
First differences of 1/p(n), reciprocal of the number p(n) of unrestricted partitions of n (negated numerator).
3
0, 1, 1, 2, 2, 4, 4, 7, 2, 1, 1, 3, 24, 34, 41, 5, 2, 8, 3, 137, 5, 35, 253, 64, 383, 239, 41, 177, 7, 1039, 619, 137, 26, 2167, 2573, 3094, 3660, 398, 94, 293, 115, 71, 917, 11914, 13959, 4106, 4799, 3217, 26252, 2791, 3247, 1262, 2302, 8032, 1329, 75547, 87331, 50533, 53, 134647
OFFSET
0,4
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.
LINKS
FORMULA
a(n) / A272340(n) = 1/p(n+1) - 1/p(n).
Product_{p prime} (1 - Sum_{n>=1} (a(n)/A272340(n))/p^n) = A272169. - Amiram Eldar, Nov 03 2020
EXAMPLE
Fractions begin: 0, -1/2, -1/6, -2/15, -2/35, -4/77, -4/165, -7/330, ...
MATHEMATICA
-(Table[1/PartitionsP[n], {n, 0, 60}] // Differences) // Numerator
PROG
(PARI) a(n) = -numerator(1/numbpart(n+1) - 1/numbpart(n)); \\ Michel Marcus, Nov 03 2020
CROSSREFS
Cf. A000041, A084911, A272340 (denominators).
Sequence in context: A033732 A033752 A059886 * A267261 A219027 A341949
KEYWORD
nonn,frac
AUTHOR
STATUS
approved