login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272337
Numbers such that antisigma(n) mod sigma(n) = d(n), where antisigma(n) is the sum of the numbers less than n that do not divide n, sigma(n) is the sum of the divisors of n and d(n) is the number of divisors of n.
1
3, 4, 52, 164, 275, 332, 388, 556, 668, 724, 892, 1004, 1172, 1228, 1396, 1676, 1732, 1844, 2012, 2348, 2404, 2572, 2908, 3076, 3188, 3244, 3356, 3412, 3524, 3748, 4084, 4196, 4252, 4364, 4868, 4924, 5036, 5204, 5596, 5708, 5932, 6044, 6212, 6268, 6436, 6548
OFFSET
1,1
FORMULA
Solutions of the equation A024816(n) mod A000203(n) = A000005(n).
EXAMPLE
52*53/2 mod sigma(52) = 1378 mod 98 = 6 = d(52).
MAPLE
with(numtheory): P:=proc(q) local n;
for n from 1 to q do if (n*(n+1)/2) mod sigma(n)=tau(n) then print(n); fi;
od; end: P(10^6);
MATHEMATICA
Select[Range@ 6600, Function[n, Mod[Total@ First@ #, Total@ Last@ #] == Length@ Last@ # &@ {Complement[Range@ n, #], #} &@ Divisors@ n]] (* faster, or *)
Select[Range@ 6600, Mod[Total[Select[Range[# - 1], Function[m, ! Divisible[#, m]]]], DivisorSigma[1, #]] == DivisorSigma[0, #] &] (* Michael De Vlieger, Apr 27 2016 *)
PROG
(PARI) isok(n) = n*(n+1)/2 % sigma(n) == numdiv(n); \\ Michel Marcus, Apr 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 26 2016
STATUS
approved