|
|
A080073
|
|
The exponential generating function A(x) = Sum a(j) x^j/j! satisfies the functional equation A(x)=1+x*(A(x))*(1-log(A(x)).
|
|
0
|
|
|
1, 1, 0, -3, 4, 50, -264, -1638, 25264, 40896, -3357360, 13380840, 559239264, -7126367664, -98536058880, 3137828374800, 8293939695360, -1427422903584000, 10789876955529216, 666226173751955712, -14427332604300810240, -279534553922071445760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
It follows that:
a(n)=((n-1)!*sum(i=0..n-1, (binomial(n,i)*sum(j=0..n, j!*(-1)^(j)*binomial(n,j)*stirling1(n-i-1,j)))/(n-i-1)!)), n>0, a(0)=1. [Vladimir Kruchinin, Oct 13 2012]
|
|
PROG
|
(Maxima)
a(n):=if n=0 then 1 else ((n-1)!*sum((binomial(n, i)*sum(j!*(-1)^(j)*binomial(n, j)*stirling1(n-i-1, j), j, 0, n))/(n-i-1)!, i, 0, n-1)); [Vladimir Kruchinin, Oct 13 2012]
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Jim Ferry (jferry(AT)alum.mit.edu), Mar 14 2003
|
|
EXTENSIONS
|
Further edited by N. J. A. Sloane, Jan 19 2019 following advice from Gilbert Labelle.
|
|
STATUS
|
approved
|
|
|
|