login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080076 Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1. 12
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: a(n) ~ (n log n)^2 / 2. - Thomas Ordowski, Oct 19 2014

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

C. Caldwell's The Top Twenty, Proth.

Eric Weisstein's World of Mathematics, Proth Prime

MAPLE

N:= 20000: # to get all terms <= N

S:= select(isprime, {seq(seq(k*2^m+1, k = 1 .. min(2^m, (N-1)/2^m), 2), m=1..ilog2(N-1))}):

sort(convert(S, list)); # Robert Israel, Feb 02 2016

MATHEMATICA

r[p_, n_] := Reduce[p == (2*m + 1)*2^n + 1 && 2^n > 2*m + 1 && n > 0 && m >= 0, {a, m}, Integers]; r[p_] := Catch[ Do[ If[ r[p, n] =!= False, Throw[True]], {n, 1, Floor[Log[2, p]]}]]; A080076 = Reap[ Do[ p = Prime[k]; If[ r[p] === True, Sow[p]], {k, 1, 2000}]][[2, 1]] (* Jean-Fran├žois Alcover, Apr 06 2012 *)

nn = 13; Union[Flatten[Table[Select[1 + 2^n Range[1, 2^Min[n, nn - n + 1], 2], # < 2^(nn + 1) && PrimeQ[#] &], {n, nn}]]] (* T. D. Noe, Apr 06 2012 *)

PROG

(PARI) is_A080076(N)=isproth(N)&&isprime(N) \\ see A080075 for isproth(). - M. F. Hasler, Oct 18 2014

CROSSREFS

Cf. A080075.

Cf. A134876 (number of Proth primes), A214120, A239234.

Cf. A248972.

Sequence in context: A266234 A180008 A089996 * A128339 A147506 A275969

Adjacent sequences:  A080073 A080074 A080075 * A080077 A080078 A080079

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Jan 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:39 EST 2016. Contains 279001 sequences.