login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A080079
Least number causing the longest carry sequence when adding numbers <= n to n in binary representation.
24
1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47
OFFSET
1,2
COMMENTS
T(n,k) < T(n,a(n)) = A070940(n) for 1 <= k < a(n) and T(n,k) <= T(n,a(n)) for a(n) <= k <= n, where T is defined as in A080080.
a(n) gives the distance from n to the nearest 2^t > n. - Ctibor O. Zizka, Apr 09 2020
FORMULA
From Benoit Cloitre, Feb 22 2003: (Start)
a(n) = A004755(n) - 2*n.
a(n) = -n + 2*2^floor(log(n)/log(2)). (End)
From Ralf Stephan, Jun 02 2003: (Start)
a(n) = n iff n = 2^k, otherwise a(n) = A035327(n-1).
a(n) = A062383(n) - n. (End)
a(0) = 0, a(2*n) = 2*a(n), a(2*n+1) = 2*a(n)-1 + 2*[n==0]. - Ralf Stephan, Jan 04 2004
a(n) = A240769(n,1); A240769(n, a(n)) = 1. - Reinhard Zumkeller, Apr 13 2014
a(n) = n + 1 - A006257(n). - Reinhard Zumkeller, Apr 14 2014
MAPLE
# Alois P. Heinz observes in A327489:
A080079 := n -> 1 + Bits:-Nor(n, n):
# Likewise:
A080079 := n -> 1 + Bits:-Nand(n, n):
seq(A080079(n), n=1..81); # Peter Luschny, Sep 23 2019
MATHEMATICA
Flatten@Table[Nest[Most[RotateRight[#]] &, Range[n], n - 1], {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
Table[FromDigits[(IntegerDigits[n, 2] /. {0 -> 1, 1 -> 0}), 2] +
1, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1] + 1, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
Table[2 2^Floor[Log[2, n]] - n, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
Flatten@Table[Reverse@Range[2^n], {n, 0, 4}] (* Birkas Gyorgy, Feb 07 2011 *)
PROG
(Haskell)
a080079 n = (length $ takeWhile (< a070940 n) (a080080_row n)) + 1
-- Reinhard Zumkeller, Apr 22 2013
(Magma) [-n+2*2^Floor(Log(n)/Log(2)): n in [1..80]]; // Vincenzo Librandi, Dec 01 2016
(Python)
def A080079(n): return (1 << n.bit_length())-n # Chai Wah Wu, Jun 30 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jan 26 2003
STATUS
approved