login
A318569
a(n) is the smallest positive integer such that n*a(n) is a "binary antipalindrome" (i.e., an element of A035928).
2
2, 1, 4, 3, 2, 2, 6, 7, 62, 1, 62, 1, 4, 3, 10, 15, 10, 31, 2, 12, 2, 31, 26, 10, 6, 2, 116, 2, 8, 5, 18, 31, 254, 5, 78, 26, 18, 1, 24, 6, 18, 1, 70, 86, 11894, 13, 254, 5, 46, 3, 4, 1, 4, 58, 264, 1, 850, 4, 162, 4, 16, 9, 34, 63, 38, 127, 56, 3, 42, 39, 2
OFFSET
1,1
COMMENTS
a(n) exists: write n = r*2^i, where r is odd. Then r divides 2^phi(r) - 1, where phi is the Euler phi function. Choose k such that k phi(r) >= i.
Then n divides (2^{k*phi(r)} - 1)*2^{k*phi(r)}, which is a binary antipalindrome.
LINKS
PROG
(PARI) See Links section.
(Python)
def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z})
def BCR(n): return int(comp(bin(n)[2:])[::-1], 2)
def a(n):
kn = n
while BCR(kn) != kn: kn += n
return kn//n
print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Mar 20 2022
CROSSREFS
Sequence in context: A080079 A341707 A347820 * A336280 A362806 A277749
KEYWORD
nonn,look,base
AUTHOR
Jeffrey Shallit, Oct 12 2018
STATUS
approved