This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318570 Expansion of Product_{k>=1} ((1 - x)^k + x^k)/((1 - x)^k - x^k). 3
 1, 2, 6, 18, 52, 146, 402, 1090, 2916, 7708, 20160, 52236, 134222, 342304, 867024, 2182384, 5461696, 13595918, 33677550, 83036878, 203859820, 498470998, 1214230586, 2947204870, 7129403128, 17191258642, 41328057106, 99067295658, 236822823336, 564650823162, 1342921372126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS First differences of the binomial transform of A015128. Convolution of A129519 and A218482. LINKS N. J. A. Sloane, Transforms FORMULA G.f.: 1/theta_4(x/(1 - x)), where theta_4() is the Jacobi theta function. G.f.: exp(Sum_{k>=1} (sigma(2*k) - sigma(k))*x^k/(k*(1 - x)^k)). a(n) ~ 2^(n-3) * exp(Pi*sqrt(n/2) + Pi^2/16) / n. - Vaclav Kotesovec, Oct 15 2018 MAPLE a:=series(mul(((1-x)^k+x^k)/((1-x)^k-x^k), k=1..100), x=0, 31): seq(coeff(a, x, n), n=0..30); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 30; CoefficientList[Series[Product[((1 - x)^k + x^k)/((1 - x)^k - x^k), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 30; CoefficientList[Series[1/EllipticTheta[4, 0, x/(1 - x)], {x, 0, nmax}], x] nmax = 30; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k]) x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] CROSSREFS Cf. A000203, A015128, A129519, A218482, A266497. Sequence in context: A018249 A245285 A128104 * A027059 A078484 A156989 Adjacent sequences:  A318567 A318568 A318569 * A318571 A318572 A318573 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Oct 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 23:00 EST 2019. Contains 329880 sequences. (Running on oeis4.)