OFFSET
1,1
COMMENTS
A Proth number is a square iff it is of the form (2^(m-1)+-1)*2^(m+1)+1 = 4^m+-2^(m+1)+1 = (2^m+-1)^2 for m > 1. See A086341. - Thomas Ordowski, Apr 22 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Bertalan Borsos, Attila Kovács and Norbert Tihanyi, Tight upper and lower bounds for the reciprocal sum of Proth primes, The Ramanujan Journal (2022).
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 38.
Amelia Carolina Sparavigna, Discussion of the groupoid of Proth numbers (OEIS A080075), Politecnico di Torino, Italy (2019).
Eric Weisstein's World of Mathematics, Proth Number.
Wikipedia, Proth number.
FORMULA
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1.09332245643583252894473574405304699874426408312553... (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022
a(n+1) = a(n) + 2^round(L(n)/2), where L(n) is the number of binary digits of a(n); equivalently, floor(log_2(a(n))/2 + 1) in the exponent. [Lemma 2.2 in Borsos et al.] - M. F. Hasler, Jul 07 2022
MATHEMATICA
Select[Range[3, 1500, 2], And[OddQ[#[[1]] ], #[[-1]] >= 1, 2^#[[-1]] > #[[1]] ] &@ Append[QuotientRemainder[#1, 2^#2], #2] & @@ {#, IntegerExponent[#, 2]} &[# - 1] &] (* Michael De Vlieger, Nov 04 2019 *)
PROG
(PARI) is_A080075 = isproth(x)={!bittest(x--, 0) && (x>>valuation(x+!x, 2))^2 < x } \\ M. F. Hasler, Aug 16 2010; edited by Michel Marcus, Apr 23 2019, M. F. Hasler, Jul 07 2022
(PARI) next_A080075(N)=N+2^(exponent(N)\2+1)
(Python)
from itertools import count, islice
def A080075_gen(startvalue=3): # generator of terms >= startvalue
return filter(lambda n:(n-1&-n+1)**2+1>=n, count(max(startvalue, 3)))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Jan 24 2003
STATUS
approved