login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086341
a(n) = 2*2^floor(n/2) - (-1)^n.
5
1, 3, 3, 5, 7, 9, 15, 17, 31, 33, 63, 65, 127, 129, 255, 257, 511, 513, 1023, 1025, 2047, 2049, 4095, 4097, 8191, 8193, 16383, 16385, 32767, 32769, 65535, 65537, 131071, 131073, 262143, 262145, 524287, 524289, 1048575, 1048577, 2097151, 2097153
OFFSET
0,2
FORMULA
E.g.f.: 2*cosh(sqrt(2)*x) + 2*sinh(sqrt(2)*x)/sqrt(2) - sinh(x) + cosh(x).
a(n) = (1 + 1/sqrt(2))*sqrt(2)^n + (1 - 1/sqrt(2))*(-sqrt(2))^n - (-1)^n.
G.f.: (1+2*x)^2/((1+x)*(1-2*x^2)). - Colin Barker, Aug 17 2012
a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3); a(0)=1, a(1)=3, a(2)=3. - Harvey P. Dale, Mar 10 2013
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=0} 1/a(n) = A065442 + A323482 - 1/2.
Sum_{n>=0} (-1)^n/a(n) = 2 * A248721. (End)
MATHEMATICA
CoefficientList[Series[(1+2x)^2/((1+x)(1-2x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[ {-1, 2, 2}, {1, 3, 3}, 50] (* Harvey P. Dale, Mar 10 2013 *)
PROG
(Magma) [2*2^Floor(n/2)-(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
(PARI) vector(40, n, n--; 2^(floor(n/2)+1) - (-1)^n) \\ G. C. Greubel, Nov 08 2018
CROSSREFS
Cf. A016116 (2^floor(n/2)).
Sequence in context: A323430 A291941 A355225 * A176513 A128424 A129758
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 16 2003
STATUS
approved