login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129758
Smallest prime p such that there are primes q and r with the property that p, q and r form an arithmetic progression and their sum is the same as three times the (n+2)-nd prime number.
1
3, 3, 5, 7, 11, 7, 17, 17, 19, 31, 29, 19, 41, 47, 47, 43, 61, 59, 67, 61, 59, 71, 67, 89, 97, 101, 79, 89, 103, 113, 107, 127, 131, 139, 151, 127, 137, 167, 167, 163, 149, 163, 167, 157, 199, 163, 197, 181, 227, 227, 211, 239, 251, 257, 257, 229, 271, 269
OFFSET
1,1
COMMENTS
The same selection rule as in A078497 applies: if there is more than one prime triple (p,q=p+d,r=q+d) with p+q+r=A001748(n), take p from the triple with minimum d. - R. J. Mathar, May 19 2007
FORMULA
A078497(n)-prime(n)=prime(n)-a(n)=d. - R. J. Mathar, May 19 2007
Conjecture: Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n+2)) = 1. - Alain Rocchelli, May 01 2024
EXAMPLE
3 + 5 + 7 = 15, which is three times the (1+2)th prime number. Thus a(1) = 3.
MAPLE
A129758 := proc(n) local p3, i, d, r, p; p3 := ithprime(n) ; i := n+1 ; while true do r := ithprime(i) ; d := r-p3 ; p := p3-d ; if isprime(p) then RETURN(p) ; fi ; i := i+1 ; od ; RETURN(-1) ; end: for n from 3 to 60 do printf("%d, ", A129758(n)) ; od ; # R. J. Mathar, May 19 2007
MATHEMATICA
a[n_]:=Module[{}, k=1; While[Not[PrimeQ[Prime[n+1]-k] && PrimeQ[Prime[n+1]+k]], k++ ]; Prime[n + 1] - k]; Table[a[n], {n, 2, 60}]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, May 15 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Giovanni Teofilatto and Stefan Steinerberger, May 19 2007
STATUS
approved