

A078497


The member r of a triple of primes (p,q,r) in arithmetic progression which sum to 3*prime(n) = A001748(n) = p + q + r.


5



7, 11, 17, 19, 23, 31, 29, 41, 43, 43, 53, 67, 53, 59, 71, 79, 73, 83, 79, 97, 107, 107, 127, 113, 109, 113, 139, 137, 151, 149, 167, 151, 167, 163, 163, 199, 197, 179, 191, 199, 233, 223, 227, 241, 223, 283, 257, 277, 239, 251, 271, 263, 263, 269, 281, 313
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

In case more than one triple of primes p, q=p+d and r=p+2*d exists, we take r=a(n) from the triple with the smallest d. This shows the difference from A092940, which would take the maximum r over all triples.  R. J. Mathar, May 19 2007


LINKS



EXAMPLE

a(1) = 7 because 3+5+7 = 15;
a(2) = 11 because 3+7+11 = 21;
a(3) = 17 because 5+11+17= 33.


MAPLE

A078497 := proc(n) local p3, i, d, r, p; p3 := ithprime(n) ; i := n+1 ; while true do r := ithprime(i) ; d := rp3 ; p := p3d ; if isprime(p) then RETURN(r) ; fi ; i := i+1 ; od ; RETURN(1) ; end: for n from 3 to 60 do printf("%d, ", A078497(n)) ; od ; # R. J. Mathar, May 19 2007


MATHEMATICA

f[n_] := Block[{p = Prime[n], k}, k = p + 1; While[ !PrimeQ[k]  !PrimeQ[2p  k], k++ ]; k]; Table[ f[n], {n, 3, 60}]


CROSSREFS



KEYWORD

nonn


AUTHOR

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), Nov 27 2002


EXTENSIONS



STATUS

approved



