OFFSET
1,5
COMMENTS
Conjecture: a(n)>0 for n>2.
a(A137700(n))=n and a(m)<>n for m < A137700(n), A000040(A137700(n))=A126204(n). - Reinhard Zumkeller, Feb 07 2008
The conjecture follows from a slightly strengthened version of Goldbach's conjecture: that every even number > 6 is the sum of two distinct primes. - T. D. Noe, Jan 10 2011 [Corrected by Barry Cherkas and Robert Israel, May 21 2015]
a(n) = A116619(n) + 1. - Reinhard Zumkeller, Mar 27 2015
Number of primes q < prime(n), such that 2*prime(n) - q is prime. - Dmitry Kamenetsky, May 27 2023
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Mladen Vassilev-Missana, Goldbach's n-perfect numbers as a key for proving the Goldbach's Conjecture, Notes on Number Theory and Discrete Mathematics (2005) Vol. 11, No. 1, 20-22.
EXAMPLE
a(7)=3 as prime(7) = 17 = (3+31)/2 = (5+29)/2 = (11+23)/2 and 2*17-p is not prime for the other primes p < 17: {2,7,13}.
MATHEMATICA
f[n_] := Block[{c = 0, k = PrimePi@n - 1}, While[k > 0, If[ PrimeQ[2n - Prime@k], c++ ]; k-- ]; c]; Table[ f@ Prime@n, {n, 84}] (* Robert G. Wilson v, Mar 22 2007 *)
PROG
(PARI) A071681(n)={s=2*prime(n); a=0; for(i=1, n-1, a=a+isprime(s-prime(i))); a}
(Haskell)
a071681 n = sum $ map a010051' $
takeWhile (> 0) $ map (2 * a000040 n -) $ drop n a000040_list
-- Reinhard Zumkeller, Mar 27 2015
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, May 31 2002
STATUS
approved