login
A178609
Largest k < n such that prime(n-k) + prime(n+k) = 2*prime(n).
9
0, 0, 1, 0, 3, 2, 2, 0, 0, 5, 3, 6, 4, 0, 0, 7, 7, 4, 8, 10, 0, 0, 7, 4, 11, 6, 2, 2, 0, 0, 13, 9, 10, 12, 0, 2, 16, 0, 6, 12, 13, 4, 19, 17, 15, 0, 18, 0, 0, 0, 11, 0, 0, 3, 1, 1, 0, 0, 6, 0, 0, 0, 27, 13, 0, 0, 17, 5, 29, 23, 26, 20, 26, 11, 7, 21, 20, 15, 19, 34, 21, 2, 21, 11, 10, 10, 10, 27, 3, 0, 0, 5, 32, 2, 0, 0, 0, 26, 0, 33
OFFSET
1,5
COMMENTS
The plot is very interesting.
FORMULA
a(A178953(n)) = 0.
EXAMPLE
a(3)=1 because 5=prime(3)=(prime(3-1)+prime(3+1))/2=(3+7)/2.
MATHEMATICA
Table[k=n-1; While[Prime[n-k]+Prime[n+k] != 2*Prime[n], k--]; k, {n, 100}]
PROG
(Sage)
def A178609(n):
return next(k for k in range(n)[::-1] if nth_prime(n-k)+nth_prime(n+k) == 2*nth_prime(n))
# D. S. McNeil, Dec 29 2010
(Haskell)
a178609 n = head [k | k <- [n - 1, n - 2 .. 0], let p2 = 2 * a000040 n,
a000040 (n - k) + a000040 (n + k) == p2]
-- Reinhard Zumkeller, Jan 30 2014
CROSSREFS
Cf. A006562 (balanced primes), A178670 (number of k), A178698 (composite case), A179835 (smallest k).
Sequence in context: A247602 A201902 A239893 * A144948 A108335 A374200
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
Extended and corrected by T. D. Noe, Dec 28 2010
STATUS
approved