login
A247602
Least positive integer m with pi(m*n) = phi(m+n), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.
7
3, 2, 1, 91, 6, 5, 1, 5, 1, 8041, 15870, 39865, 1, 251625, 637064, 1829661, 4124240, 10553093, 1, 69709253, 179992156, 465769749, 1210576800, 3140421235, 13974959892
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0.
EXAMPLE
a(1) = 3 since pi(1*3) = 2 = phi(1+3).
MATHEMATICA
Do[m=1; Label[aa]; If[PrimePi[n*m]==EulerPhi[m+n], Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa];
Label[bb]; Continue, {n, 1, 20}]
Table[m = 1;
While[PrimePi[n*m] != EulerPhi[m + n], m++]; m, {n, 1, 13}] (* Robert Price, Sep 08 2019 *)
PROG
(PARI) a(n) = {my(m = 1); while (primepi(m*n) != eulerphi(m+n), m++); m; } \\ Michel Marcus, Sep 22 2014
KEYWORD
nonn,more
AUTHOR
Zhi-Wei Sun, Sep 21 2014
EXTENSIONS
a(21)-a(25) from Hiroaki Yamanouchi, Oct 04 2014
STATUS
approved