OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0.
LINKS
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(1) = 3 since pi(1*3) = 2 = phi(1+3).
MATHEMATICA
Do[m=1; Label[aa]; If[PrimePi[n*m]==EulerPhi[m+n], Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa];
Label[bb]; Continue, {n, 1, 20}]
Table[m = 1;
While[PrimePi[n*m] != EulerPhi[m + n], m++]; m, {n, 1, 13}] (* Robert Price, Sep 08 2019 *)
PROG
(PARI) a(n) = {my(m = 1); while (primepi(m*n) != eulerphi(m+n), m++); m; } \\ Michel Marcus, Sep 22 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Zhi-Wei Sun, Sep 21 2014
EXTENSIONS
a(21)-a(25) from Hiroaki Yamanouchi, Oct 04 2014
STATUS
approved