login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247599
Number of ways of writing n as a sum: n = 2^0*k(0)^3 + 2^1*k(1)^3 + 2^2*k(2)^3 + ... where the k's are nonnegative integers.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 5, 4, 3, 3, 4, 3, 2, 2, 6, 4, 4, 4, 4, 3, 2, 3, 7, 5, 4, 4, 4, 3, 3, 4, 8, 5, 5, 6, 4, 4, 4, 4, 10, 6, 8, 7, 6, 5, 6, 5, 10, 5, 8, 7, 6, 4, 6, 4, 12, 8, 8, 8, 8, 7
OFFSET
0,9
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n<0 or i<0, 0, add(b(n-2^i*j^3, i-1),
j=0..iroot(iquo(n, 2^i), 3))))
end:
a:= n-> b(n, ilog2(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1,
If[n < 0 || i < 0, 0, Sum[b[n - 2^i*j^3, i - 1],
{j, 0, Floor@Quotient[n, 2^i]^(1/3)}]]];
a[n_] := b[n, Floor@Log2[n]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A354598 A239061 A309025 * A083897 A368212 A025823
KEYWORD
nonn,look
AUTHOR
David S. Newman, Sep 21 2014
STATUS
approved