login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025823
Expansion of 1/((1-x^2)(1-x^9)(1-x^10)).
0
1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 2, 4, 2, 4, 2, 4, 3, 5, 4, 6, 4, 6, 4, 6, 4, 7, 5, 8, 6, 9, 6, 9, 6, 9, 7, 10, 8, 11, 9, 12, 9, 12, 9, 13, 10, 14, 11, 15, 12, 16, 12, 16, 13, 17, 14, 18, 15, 19, 16, 20, 16
OFFSET
0,11
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 1).
FORMULA
a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=0, a(6)=1, a(7)=0, a(8)=1, a(9)=1, a(10)=2, a(11)=1, a(12)=2, a(13)=1, a(14)=2, a(15)=1, a(16)=2, a(17)=1, a(18)=3, a(19)=2, a(20)=4, a(n)=a(n-2)+a(n-9)+a(n-10)- a(n-11)- a(n-12)-a(n-19)+a(n-21). - Harvey P. Dale, Oct 15 2013
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* or *) LinearRecurrence[{0, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 1}, {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4}, 80] (* Harvey P. Dale, Oct 15 2013 *)
CROSSREFS
Sequence in context: A247599 A083897 A368212 * A025821 A161233 A161057
KEYWORD
nonn
AUTHOR
STATUS
approved