OFFSET
0,10
COMMENTS
a(n+1) is the number of representations of n=sum_i c_i*2^i with c_i in {0,1,8} [Anders]. See A120562 if c_i in {0,1,3} or A000012 if c_i in {0,1}. - R. J. Mathar, Mar 01 2023
LINKS
K. Anders, Counting Non-Standard Binary Representations, JIS vol 19 (2016) #16.3.3 example 5.
FORMULA
a(n) = 0 for n <= 0, a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n-3) + a(n+1).
MATHEMATICA
nmax = 100; CoefficientList[Series[x Product[(1 + x^(2^k) + x^(2^(k + 3))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 07 2019
STATUS
approved