login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354598
Maximal GCD of eight positive integers with sum n.
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 3, 5, 1, 3, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 9, 1, 2, 5, 4, 7, 6, 1, 10, 9, 2, 1, 7, 5, 2, 3, 11, 1, 10, 7, 4, 3, 2, 5, 12, 1, 7, 11, 10
OFFSET
8,9
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, signum(t),
`if`(min(i, t)<1, 1, max(b(n, i-1, t),
igcd(b(n-i, min(n-i, i), t-1), i))))
end:
a:= n-> `if`(n<8, 0, b(n$2, 8)):
seq(a(n), n=8..200); # Alois P. Heinz, Jul 13 2022
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[Min[i, t] < 1, 1, Max[b[n, i - 1, t], GCD[b[n - i, Min[n - i, i], t - 1], i]]]];
a[n_] := If[n < 8, 0, b[n, n, 8]];
Table[a[n], {n, 8, 100}] (* Jean-François Alcover, Sep 21 2022, after Alois P. Heinz *)
CROSSREFS
Maximal GCD of k positive integers with sum n for k = 2..10: A032742 (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), this sequence (k=8), A354599 (k=9), A354601 (k=10).
Sequence in context: A323880 A338651 A033107 * A239061 A309025 A247599
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 08 2022
STATUS
approved