OFFSET
5,1
COMMENTS
The author proved that a(n) exists for every n >= 5.
a(39) = a(41) = 5. - Chai Wah Wu, Jun 06 2024
LINKS
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685 [math.NT], 2014-2017.
EXAMPLE
a(5) = 9 since pi(5*9) = 14 = 5 + 9, and pi(5*m) = 5 + m for no m < 9.
MATHEMATICA
Do[m=1; Label[aa]; If[PrimePi[n*m]==m+n, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 5, 21}]
Table[m = 1; While[PrimePi[m*n] != m + n, m++]; m, {n, 5, 14}] (* Robert Price, Mar 20 2019 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Zhi-Wei Sun, Sep 21 2014
EXTENSIONS
a(22)-a(37) from Chai Wah Wu, May 03 2018
STATUS
approved