login
A178612
Positive numbers of the form p^6 - 4*p^4*q + 4*p^2*q^2 + 4*q^3 (and p*q <> 0).
0
5, 20, 32, 41, 124, 133, 140, 160, 189, 224, 257, 265, 284, 292, 305, 320, 445, 509, 581, 644, 673, 945, 985, 1076, 1085, 1120, 1280, 1345, 1436, 1489, 1541, 1597, 1708, 1772, 1917, 2048, 2237, 2273, 2336, 2345, 2489, 2624, 2749, 2889, 2980, 3105, 3140, 3205
OFFSET
1,1
COMMENTS
Conjecture: There are no perfect squares in this sequence (in spite of all numbers being congruent to 0 or 1 mod 4).
If any perfect square occurred in this sequence then a septic trinomial x^7 + A*x^2 + B with two irreducible factors of degree 3 and 4 would exist.
This sequence is a subsequence of A079896.
MATHEMATICA
aa = {}; Do[Do[kk = p^6 - 4 p^4 q + 4 p^2 q^2 + 4 q^3; If[(kk > 0) && (p q != 0), AppendTo[aa, kk]], {p, 1, 200}], {q, -200, 200}]; Take[Union[aa], 100]
CROSSREFS
Cf. A079896.
Sequence in context: A080654 A162690 A074219 * A063133 A029528 A101867
KEYWORD
nonn
AUTHOR
Artur Jasinski, May 30 2010
STATUS
approved