The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128424 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))), a(1)=1, a(2)=3. 0
 1, 3, 3, 5, 7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a triangle with sides a(n-1) and a(n-2) and a 120-degree angle between them, a(n) is the floor of the value of the third side. a(n) = A020711(n-4) for 4 <= n <= 41. - Georg Fischer, Nov 02 2018 LINKS FORMULA Conjectures from Colin Barker, Nov 03 2018: (Start) G.f.: x*(1 + x - 2*x^2 + x^3 - 2*x^4 + x^5 - x^6) / ((1 - x)*(1 - x - x^3)). a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>7. (End) MATHEMATICA a[1]=1; a[2]=3; a[n_]:=a[n]=Floor[Sqrt[a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2]]] Table[a[n], {n, 45}] RecurrenceTable[{a[1]==1, a[2]==3, a[n]==Floor[Sqrt[a[n-1]^2+a[n-2]^2+ a[n-1]*a[n-2]]]}, a, {n, 50}] (* Harvey P. Dale, Oct 01 2018 *) CROSSREFS Cf. A020711, A104803, A104804, A104805. Sequence in context: A291941 A086341 A176513 * A129758 A176347 A161834 Adjacent sequences:  A128421 A128422 A128423 * A128425 A128426 A128427 KEYWORD nonn AUTHOR Zak Seidov, May 04 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 05:05 EST 2021. Contains 349416 sequences. (Running on oeis4.)