login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128424
a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))), a(1)=1, a(2)=3.
0
1, 3, 3, 5, 7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962
OFFSET
1,2
COMMENTS
For a triangle with sides a(n-1) and a(n-2) and a 120-degree angle between them, a(n) is the floor of the value of the third side.
a(n) = A020711(n-4) for 4 <= n <= 41. - Georg Fischer, Nov 02 2018
FORMULA
Conjectures from Colin Barker, Nov 03 2018: (Start)
G.f.: x*(1 + x - 2*x^2 + x^3 - 2*x^4 + x^5 - x^6) / ((1 - x)*(1 - x - x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>7.
(End)
MATHEMATICA
a[1]=1; a[2]=3; a[n_]:=a[n]=Floor[Sqrt[a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2]]] Table[a[n], {n, 45}]
RecurrenceTable[{a[1]==1, a[2]==3, a[n]==Floor[Sqrt[a[n-1]^2+a[n-2]^2+ a[n-1]*a[n-2]]]}, a, {n, 50}] (* Harvey P. Dale, Oct 01 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, May 04 2007
STATUS
approved