login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104804
"Rounded hypotenuses": a(n) = round(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=1, a(2)=3.
7
1, 3, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 33, 42, 53, 68, 86, 110, 140, 178, 226, 288, 366, 466, 593, 754, 959, 1220, 1552, 1974, 2511, 3194, 4063, 5168, 6574, 8362, 10637, 13530, 17211, 21892, 27847, 35422, 45057, 57314, 72904, 92736, 117962, 150050
OFFSET
1,2
FORMULA
a(n) = A063827(n) for n > 2. - Georg Fischer, Oct 07 2018
MATHEMATICA
a[n_] := a[n] = Round[ Sqrt[ a[n - 1]^2 + a[n - 2]^2]]; a[1] = 1; a[2] = 3; Table[ a[n], {n, 48}] (* Robert G. Wilson v, Mar 28 2005 *)
PROG
(Python)
from gmpy2 import isqrt_rem
A104804_list = [1, 3]
for _ in range(1000):
i, j = isqrt_rem(A104804_list[-1]**2+A104804_list[-2]**2)
A104804_list.append(int(i+ int(4*(j-i) >= 1))) # Chai Wah Wu, Aug 16 2016
CROSSREFS
Sequence in context: A327226 A011977 A104803 * A240207 A347286 A144489
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 26 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 28 2005
STATUS
approved