The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240207 Number of partitions p of n such that median(p) < multiplicity(max(p)). 5
 0, 0, 1, 1, 1, 1, 3, 3, 4, 5, 6, 8, 11, 14, 18, 24, 27, 35, 41, 52, 65, 79, 96, 122, 145, 177, 213, 256, 307, 368, 434, 524, 623, 741, 876, 1049, 1230, 1458, 1714, 2019, 2362, 2778, 3234, 3792, 4412, 5148, 5980, 6970, 8069, 9372, 10846, 12559, 14491, 16754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Table of n, a(n) for n=0..53. FORMULA a(n) = A240209(n) - A240208(n) for n >= 0. a(n) + A240209(n) + A240210(n) = A000041(n) for n >= 0. EXAMPLE a(6) counts these 3 partitions: 222, 2211, 111111. MATHEMATICA z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Median[p] < Count[p, Max[p]]], {n, 0, z}] (* A240207 *) t2 = Table[Count[f[n], p_ /; Median[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240208 *) t3 = Table[Count[f[n], p_ /; Median[p] == Count[p, Max[p]]], {n, 0, z}] (* A240209 *) t4 = Table[Count[f[n], p_ /; Median[p] > Count[p, Max[p]]], {n, 0, z}] (* A240210 *) t5 = Table[Count[f[n], p_ /; Median[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240211 *) CROSSREFS Cf. A240208, A240209, A240210, A240211, A000041. Sequence in context: A011977 A104803 A104804 * A347286 A144489 A239640 Adjacent sequences: A240204 A240205 A240206 * A240208 A240209 A240210 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 20:40 EST 2024. Contains 370400 sequences. (Running on oeis4.)