OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020
EXAMPLE
0.4210976860334237772959908879677130489614413363241154046059207967127713704887...
MAPLE
evalf(sum(1/(4^k-1), k=1..infinity), 120) # Vaclav Kotesovec, Oct 18 2014
# second program with faster converging series after Joerg Arndt
evalf( add( (1/4)^(n^2)*(1 + 2/(4^n - 1)), n = 1..13), 105); # Peter Bala, Jan 30 2022
MATHEMATICA
x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
PROG
(PARI) suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Robert G. Wilson v, Oct 12 2014
STATUS
approved