

A248721


Decimal expansion of Sum_{k>=1} 1/(4^k  1).


12



4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


FORMULA

Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1x^k) where x = 1/4 (the Lambert series evaluated at 1/4).  Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005).  Amiram Eldar, Jun 22 2020


EXAMPLE

0.4210976860334237772959908879677130489614413363241154046059207967127713704887...


MAPLE

evalf(sum(1/(4^k1), k=1..infinity), 120) # Vaclav Kotesovec, Oct 18 2014
# second program with faster converging series after Joerg Arndt
evalf( add( (1/4)^(n^2)*(1 + 2/(4^n  1)), n = 1..13), 105); # Peter Bala, Jan 30 2022


MATHEMATICA

x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)


PROG

(PARI) suminf(k=1, 1/(4^k1)) \\ Michel Marcus, Oct 18 2014


CROSSREFS

Cf. A000005, A065442, A073668, A214369, A248722, A248723, A248724, A248725, A248726.
Sequence in context: A085668 A256702 A266921 * A110324 A357586 A266861
Adjacent sequences: A248718 A248719 A248720 * A248722 A248723 A248724


KEYWORD

nonn,cons


AUTHOR

Robert G. Wilson v, Oct 12 2014


STATUS

approved



