login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073668
Decimal expansion of Sum_{k>=1} 1/(10^k - 1).
16
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 3, 0, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 3, 2, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 3, 2, 2, 4, 6, 6, 4, 8, 3, 0, 5, 4, 3, 2, 4, 4, 4, 8, 3, 2, 4, 6, 4, 4, 5, 2, 2, 6, 6, 9, 2, 8, 2, 8, 8
OFFSET
0,2
COMMENTS
Parallels A000005 up to a(46).
Sum_{k>=1} x^k/(1-x^k) = Sum_{k>=1} tau(k)*x^k. Choosing x = 1/10 gives the result. - Amarnath Murthy, Oct 21 2002
REFERENCES
Amarnath Murthy, Some interesting results on d(N), the number of divisors of a natural number, page 463, Octogon Mathematical Magazine, Vol. 8 No. 2, October 2000.
FORMULA
From Eric Desbiaux, Mar 11 2009: (Start)
Equals Sum_{k >= 1} 1/((2^k*5^k)-1).
Equals Sum_{k >= 1} (1/2^k)*(1/5^k)/(1-((1/2^k)*(1/5^k))).
Sum_{k >= 1} 1/(5^k) = 1/4.
Sum_{k >= 1} 1/(2^k) = 1.
Sum_{k >= 1} (1/5^k)/(1-((1/2^k)*(1/5^k))) = 0.2726344339156...
Sum_{k >= 1} (1/2^k)/(1-((1/2^k)*(1/5^k))) = 1.0582125127815...
Sum_{k >= 1} 1/(1-((1/2^k)*(1/5^k))) - 1 = A073668.
(End)
Fast computation via Lambert series: 0.122324243426... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/10. - Joerg Arndt, Oct 18 2020
EXAMPLE
0.122324243426244526264428344628264449244... = A065444/9.
MAPLE
evalf(Sum(1/(10^k - 1), k = 1..infinity), 200) # Vaclav Kotesovec, Jul 16 2019
# second program with faster converging series after Joerg Arndt
evalf( add( (1/10)^(n^2)*(1 + 2/(10^n - 1)), n = 1..8), 105); # Peter Bala, Jan 30 2022
MATHEMATICA
RealDigits[ N[ Sum[1/(10^k - 1), {k, 1, Infinity}], 120]] [[1]]
PROG
(PARI) suminf(k=1, 1/(10^k-1)) \\ Charles R Greathouse IV, Oct 05 2014
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 29 2002
STATUS
approved