login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073669
a(1) = 1, a(n) = the smallest composite multiple of n such that every partial sum is prime.
2
1, 4, 6, 8, 10, 12, 42, 24, 72, 20, 132, 36, 52, 14, 30, 16, 68, 54, 76, 80, 126, 88, 92, 24, 100, 26, 108, 112, 116, 30, 310, 128, 66, 204, 70, 36, 74, 76, 78, 120, 902, 84, 430, 44, 360, 460, 188, 240, 294, 100, 204, 104, 106, 54, 110, 280, 342, 116, 708, 60, 244, 62
OFFSET
1,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
a[1] := 1:su := 1:for n from 2 to 112 do i := 1: if(isprime(n)) then i := i+1:fi:while(not isprime(i*n+su)) do i := i+1:od:a[n] := i*n:su := su+a[n]:od:seq(a[j], j=1..112);
MATHEMATICA
a[1]=s[1]=1; s[n_] := s[n]=s[n-1]+a[n]; a[n_] := a[n]=For[i=1, True, i++, If[ !PrimeQ[i*n]&&PrimeQ[s[n-1]+i*n], Return[i*n]]]
PROG
(PARI) first(L)=my(v=vector(L), s, k); s=v[1]=1; for(n=2, #v, k=n; while(isprime(k) || !isprime(s+k), k+=n); s+=k; v[n]=k); v \\ Charles R Greathouse IV, Apr 24 2015
CROSSREFS
Sequence in context: A096160 A181055 A225506 * A073670 A090169 A190330
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 11 2002
EXTENSIONS
Corrected and extended by Sascha Kurz, Jan 30 2003
STATUS
approved