login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225506
-2-Knödel numbers.
9
4, 6, 8, 10, 12, 24, 28, 30, 70, 88, 130, 238, 510, 754, 868, 910, 1330, 2068, 2590, 2728, 3304, 4002, 5110, 5406, 8554, 8710, 12958, 15748, 18430, 20878, 21238, 23902, 24178, 32422, 39928, 46870, 49210, 53590, 55678, 57358, 62248, 67858, 70414, 79378, 88198, 95038, 95758, 95788, 102238, 114478
OFFSET
1,1
COMMENTS
Extension of k-Knödel numbers to k negative, in this case equal to -2. Composite numbers n > 0 such that if 1 < a < n and gcd(n,a) = 1 then a^(n+2) = 1 mod n.
All terms are even numbers.
LINKS
Eric Weisstein's World of Mathematics, Knödel Numbers
MAPLE
with(numtheory); ListA225506:=proc(q, k) local a, n, ok;
for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do
if gcd(a, n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi;
od; if ok=1 then print(n); fi; fi; od; end: ListA225506(10^6, -2);
MATHEMATICA
Select[Range[10000], CompositeQ[#] && Divisible[# + 2, CarmichaelLambda[#]] &] (* Amiram Eldar, Mar 28 2019 *)
PROG
(PARI)
is(n) = forprime(p=3, n, if (n%p != 0 && Mod(p, n)^(n+2) != 1, return(0))); 1;
seq(N) = {
my(a=vector(N), k=0, n=4);
while(k < N, if(is(n), a[k++] = n); n += 2);
a;
};
seq(50) \\ Gheorghe Coserea, Dec 23 2018
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 09 2013
EXTENSIONS
More terms from Gheorghe Coserea, Dec 23 2018
STATUS
approved