login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

-2-Knödel numbers.
9

%I #24 Mar 28 2019 07:03:08

%S 4,6,8,10,12,24,28,30,70,88,130,238,510,754,868,910,1330,2068,2590,

%T 2728,3304,4002,5110,5406,8554,8710,12958,15748,18430,20878,21238,

%U 23902,24178,32422,39928,46870,49210,53590,55678,57358,62248,67858,70414,79378,88198,95038,95758,95788,102238,114478

%N -2-Knödel numbers.

%C Extension of k-Knödel numbers to k negative, in this case equal to -2. Composite numbers n > 0 such that if 1 < a < n and gcd(n,a) = 1 then a^(n+2) = 1 mod n.

%C All terms are even numbers.

%H Gheorghe Coserea, <a href="/A225506/b225506.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KnoedelNumbers.html">Knödel Numbers</a>

%p with(numtheory); ListA225506:=proc(q,k) local a,n,ok;

%p for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do

%p if gcd(a,n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi;

%p od; if ok=1 then print(n); fi; fi; od; end: ListA225506(10^6,-2);

%t Select[Range[10000], CompositeQ[#] && Divisible[# + 2, CarmichaelLambda[#]] &] (* _Amiram Eldar_, Mar 28 2019 *)

%o (PARI)

%o is(n) = forprime(p=3, n, if (n%p != 0 && Mod(p,n)^(n+2) != 1, return(0))); 1;

%o seq(N) = {

%o my(a=vector(N), k=0, n=4);

%o while(k < N, if(is(n), a[k++] = n); n += 2);

%o a;

%o };

%o seq(50) \\ _Gheorghe Coserea_, Dec 23 2018

%Y Cf. A208728.

%Y Cf. A225507, A225508, A225509, A225510, A225511, A225512, A225513, A225514.

%K nonn

%O 1,1

%A _Paolo P. Lava_, May 09 2013

%E More terms from _Gheorghe Coserea_, Dec 23 2018