OFFSET
1,1
COMMENTS
The partial alternating sum over bigomega(.)=A001222(.) in the definition starts at n=1
as 0, 1, 0, 2, -1, 3, -2, 5, -3, 5, -4, 7, -6, 8 ...
The first primes in this signed sequence are
2, 3, 5, 5, 7, 17, 17, 17, 19, 23, 23, 31, 37, 53, 59, 61, 79, 97, 103, 107, 107, 107, 109,...
occurring at positions 4, 6, 8, 10 etc, which define the sequence.
EXAMPLE
6 is in the sequence because sum_{k=1..6}(-1)^ (6-k)*bigomega(k) =
((-1)^5)*0 + ((-1)^4)*1 + ((-1)^3)*1 + ((-1)^2)*2 + ((-1)^1)*1 + ((-1)^0)*2 =
0 + 1 -1 + 2 -1 + 2 = 3 is prime.
MAPLE
with(numtheory):for n from 1 to 1000 do: s:=0: for k from 1 to n do :s:=s+((-1)^(n-k))*bigomega(k):od: if type(s, prime)=true then printf(`%d, `, n):else fi:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 01 2010
EXTENSIONS
Comment slightly extended - R. J. Mathar, Oct 03 2010
STATUS
approved