login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181057 Numbers n such that Sum_{k=1..n} (-1)^(n-k) *phi(2*k) is prime. 0
4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 23, 25, 26, 27, 28, 30, 31, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 71, 72, 74, 75, 77, 78, 79, 80, 81, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 105, 108, 109 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The partial alternating sum over phi(.) = A000010(.) in the definition starts at n = 1 as 1, 1, 1, 3, 1, 3, 3, 5, 1, 7, 3, 5, 7, 5, 3, 13, ...

The first primes in this auxiliary sequence are 3, 3, 3, 5, 7, 3, 5, 7, 5, 3, 13, 3, 7, 5, 7, 11, 13, 5, 19, 7, 23, 11, 3, 3, 29, 11, 13, ... occurring at positions 4, 6, 7, 8, etc., which define the sequence.

LINKS

Table of n, a(n) for n=1..69.

EXAMPLE

4 is in the sequence because Sum_{k=1..4} (-1)^(4-k)*phi(2*k) = ((-1)^3)*1 + ((-1)^2)*2 + ((-1)^1)*2 + ((-1)^0)*4 = -1 + 2 - 2 + 4 = 3 is prime.

MAPLE

with(numtheory):for n from 1 to 200 do:x:=sum((((-1)^(n-k))*phi(2*k), k=1..n)): if type(x, prime)=true then printf(`%d, `, n):else fi:od:

CROSSREFS

Cf. A000010, A062570.

Sequence in context: A299411 A079000 A047509 * A151757 A171413 A225551

Adjacent sequences:  A181054 A181055 A181056 * A181058 A181059 A181060

KEYWORD

nonn

AUTHOR

Michel Lagneau, Oct 01 2010

EXTENSIONS

Comment slightly extended by R. J. Mathar, Oct 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 07:56 EDT 2019. Contains 328026 sequences. (Running on oeis4.)