login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181059 a(n) = floor(sin(n) - cos(n)). 1
-1, 0, 1, 1, -1, -2, -2, -1, 1, 1, 0, -2, -2, -1, 0, 1, 0, -1, -2, -1, 0, 1, 0, -1, -2, -2, 0, 1, 1, 0, -2, -2, -1, 1, 1, 0, -1, -2, -1, 0, 1, 0, -1, -2, -1, 0, 1, 1, -1, -2, -2, -1, 1, 1, 0, -2, -2, -1, 0, 1, 0, -1, -2, -1, 0, 1, 0, -1, -2, -2, 0, 1, 1, 0, -2, -2, -1, 1, 1, 0, -1, -2, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

FORMULA

a(n) = floor( -sqrt(2)*cos(n + Pi/4) ). - R. J. Mathar, Oct 03 2010

MAPLE

A181059 := proc(n) -sqrt(2)*cos(n+Pi/4) ; floor(%) ; end proc: seq(A181059(n), n=0..120) ; # R. J. Mathar, Oct 03 2010

MATHEMATICA

Table[Floor[Sin[n]-Cos[n]], {n, 0, 120}] (* Harvey P. Dale, Jun 01 2018 *)

PROG

(Magma) [Floor(Sin(n) - Cos(n)): n in [0..120]]; // G. C. Greubel, Apr 05 2021

(Sage) [floor(-sqrt(2)*cos(n+pi/4)) for n in (0..120)] # G. C. Greubel, Apr 05 2021

CROSSREFS

Cf. A126564 (floor sin(n)*cos(n)).

Sequence in context: A234514 A343453 A051031 * A111915 A066520 A088526

Adjacent sequences:  A181056 A181057 A181058 * A181060 A181061 A181062

KEYWORD

sign,easy

AUTHOR

Jonathan D. B. Hodgson, Oct 01 2010

EXTENSIONS

More terms from R. J. Mathar, Oct 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)